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Introduction 

The existences of communicable illnesses today, are reality of 

the modern-day lifestyles all dwelling organisms have come 

to terms with. As humans, urbanization and different elements 

which are making our existence less complicated to stay has 

in a way emerge as the predominant reasons of illnesses 

which are capable of wiping out a population or causing 

unborn generations to be infected with it. According to Riedel 

(2005) infectious diseases are caused by pathogenic 

microorganisms, such as bacteria, viruses, fungi and parasites 

and these diseases can spread directly or indirectly from one 

person to another or from animals/birds to humans. For 

example, the recent surge of the novel Coronavirus has 

brought huge economic and societal implications. According 

to the World Health Organization (WHO) Director General 

Mandate is public health, but we’re working with many 

partners across all actors to mitigate the social and economic 

consequences of this pandemic. He also noted that; this is not 

just a public health crisis. It’s a crisis that will touch every 

sector, therefore every sector and individual must be involved 

in the fight.  

Mathematical modeling has become an invaluable tool to 

understand the dynamics of infectious disease and to support 

the development of control strategies. Kermack et al. (1927) 

in their first paper titled contributions to the mathematical 

theory of epidemics (part I) started with the assumption that 

all members of the community are initially equally susceptible 

to the disease, and that a complete immunity is conferred after 

the infection. The population is divided into three distinct 

classes: the susceptible (S) (individuals who potentially open 

to the disease), the infected (I) (those who have the disease 

and can transmit it) and the removed (R) (individuals who 

have had the disease and are now immune to the infection) or 

removed from further propagation of the disease by some 

other means. Talawar (2008) included a new class of 

immunized (vaccinated) individuals in SIS endemic model. 

He obtained that even at smaller values of φ(immunization 

rate) the larger fraction of susceptible population can be 

protected and number of infected individuals can be reduced 

to a great extent.    

According to the Center for Disease Control and Prevention, 

epidemics occasionally comes omitted until large quantity of 

people displays comparable signs pronounced through public 

health agencies of which may have claimed a lot of lives and 

probably can't be contained for the reason that it has 

extensively invaded a massive number of people in the 

population typically referred to as the infectious class. The 

novel coronavirus is a classic example, On the 11th March 

2020, the WHO Director-General “rang the alarm bell loud 

and clear” by calling COVID-19 a pandemic. The effective 

contact rate can generally impact on the spread of the 

infectious disease. Olaniyi et al. (2014), research work 

majoring on a deterministic epidemiological model describing 

the spread of infectious disease characterized by pseudo-

recovery due to incomplete treatment, discovered that 

increasing the value of any of the parameters such as effective 

contact rate, pseudo-recovery rate increases the basic 

reproduction number, and the magnitude of the infectious 

individuals in the community increases accordingly. 

Conversely, increasing the value of either death rate or 

recovery rate decreases the basic reproduction number and the 

magnitude of the infectious individuals in the community 

decreases accordingly. 

In this light, evaluating inoculation (by vaccination and 

others) or isolation plans will further have significant effect on 

the mortality rate of a particular epidemic. Farrington (2003) 

studied the impact of vaccination program on the transmission 

potential of the infection in large populations. He also 

obtained the relationship between vaccine efficacy against 

transmission, reproduction number and vaccine coverage 

Stability evaluation of compartmental models in epidemiology 

has been used to furnish an understanding of the underlying 

mechanisms that govern the emergence of infectious diseases 

and in the procedure it suggests management strategies for the 

eradication of these ailments. This broad principle, constant 

with observations and quantified by means of epidemiological 

models, has been persistently used to estimate the usefulness 

of vaccination policies and the prospect that a disease may 

additionally be eliminated or eradicated 

Statement of the Problem  

The primary hazard to human existence today is diseases. It 

can successfully wipe out a populace or cause unborn 

generations to be carrier or contaminated with it. These 

illnesses typically come as an epidemic. The Center for 

Disease control and Prevention defines Epidemic as an 

increase, often sudden in the number of cases of a disease 

above what is normally expected in that area. Epidemic 

usually affects enormous number of individuals and can result 

to complications that include disabilities and even death. 

Epidemic situations also deteriorate the already overburdened 

health services, as the scares available resources have to be 

diverted for controlling and management of epidemics. For 

instance, during a sudden outbreak of an epidemic, social and 

political tension arises from the spread thus hindering 

economic activities of that particular society lacking strong 

and healthy working population due to the infection. The 

efficacy and productivity of a society, region or country 

invaded by epidemics usually have a descending slide 

resulting from scarcity of clean food and water, hence 

increasing  starvation, death and  leaving behind weak and 
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sickly population which are neither helpful to themselves and 

the society at large. 

However, to counter these setbacks the role of mathematical 

epidemiology is to model the establishment and spread of the 

epidemics. A commonly effective method of doing so is to 

use the notion of selecting the population into compartments 

under certain assumptions, which represent their health status 

with respect to the pathogen in the system.  Kermack and MC 

Kendrick in the early 1900s successfully developed an 

approach to this model. These models are known as 

compartmental models in epidemiology, and serve as a base 

mathematical framework for understanding the complex 

dynamics of these systems. 

Objectives of the Study 

This research work aims at finding out the stability analysis of 

the SIR and SIS compartmental models with vital dynamics 

with the following objectives  

i. To determines the disease free equilibrium and the 

endemic equilibrium points 

ii. To have a general look at stability analysis of these 

models majoring on the local stability, at disease-free 

equilibrium and the endemic equilibrium point. 

 

Materials and Methods 

Compartmental models  
Compartmental Models are made up of a finite number of 

homogenous well blended sub systems called compartments 

which interacts with each other and with the surroundings so 

that the concentration of materials inside each compartment 

may additionally be described via a First Order Differential 

Equation. Compartmental models are divided according to; 

One compartmental modeling and two or multi-

compartmental modeling  

Some examples of epidemiological compartmental models 
Many mathematical models with regards to epidemiology are 

important equipment in analyzing the expansion control of 

infectious diseases. The model formation technique clarifies 

assumptions, variables and parameters used in offering 

conceptual result such as the disease free equilibruim point 

and endemic equilibrium points thereby understanding the 

transmission traits and dynamics of infectious disease. The 

following are some examples of compartmental mode  

i. SEIR Model: This model basically addresses diseases 

that allow a window period referred as latent period 

(period when infected is not infectious). This 

population is divided into four compartment namely 

Susceptible, Exposed, Infected and Recovered; 

 
 

ii. SIS Model: This model studies the disease that 

doesn’t confer lasting immunity to the once infected 

individual e.g. common cold, STDs, etc. It divides 

population into Susceptible and infected compartment. 

 
 

iii. SIR Model: This is used to study disease in which the 

infected individual may recover i.e. which confers 

immunity against re-infection. This model divides the 

population into  three compartments; Susceptible 

Infected and   Recovered  

 
 

These compartments interact homogeneously with each other 

at a particular time  

The SIR model with vital dynamics  

The SIR model in epidemiology gives a simple dynamic 

description of the three interacting population consisting of; 

i. Susceptible. Individuals that are not infected yet, but 

have the tendency or likelihood of been infected 

provided all condition of being infected is satisfied. it 

is  denoted by S 

ii. Infected. Individuals infected by the disease (casual 

organism).Denoted by the symbol I.  

iii. Recovered. Individuals that have returned to normal 

state of health after they have been infected. Denoted 

by R 

 

The SIR model discussed here put into consideration the vital 

dynamics (birth rate and death rate) since over a period of 

time this two factors determine the stability of the model. In 

spite of its simplicity, the SIR model exhibits the basic 

structure generally associated to the spread of a disease in a 

population. The way these compartments interact is often 

based on assumptions, and the model is built up from there. 

These models are usually investigated through Ordinary 

Differential Equations (which are deterministic). 

Variables of the model 

i. S (t) denotes the number of individuals who are 

susceptible to the disease, that is, who are not (yet) 

infected at time t.  

ii. I (t) denotes the number of infected individuals, 

assumed infectious and able to spread the disease by 

contact with susceptible.  

iii. R (t) denotes the number of individuals who have 

been infected and then removed from the possibility 

of being infected again or of spreading infection. 

Removal is carried out either through isolation from 

the rest of the population, through immunization 

against infection or through recovery from the 

disease with full immunity against reinfection or 

through death caused by the disease. 

 

Assumptions of the SIR model with vital dynamics 
This model is appropriate under the following assumptions: 

i. The population is fixed.  

ii. The only way a person can leave the susceptible 

group is to become infected. Once a person has 

recovered, the person received immunity.  

iii. Age, sex, social status, and race do not affect the 

probability of being infected.  

iv. There is no inherited immunity. 

v. The member of the population mix homogeneously 

(have the same interactions with one another to the 

same degree).  

vi. The natural birth and death rates are included. 

vii. All births are into the susceptible class.  

viii. The death rate is equal for members of all three 

classes, and it is assumed that the birth and death 

rates are equal so that the total population is 

stationary 

 

Model Formulation  

To understand the SIR model the basic notations are given 

below; 

The SIR model labels these three compartments  

S (t) = number of susceptible at time t 

I (t) = number of infectious, at time t 

R (t) =number recovered (immune) at time t. 

N= total population size 
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Fig. 1: Flow chart for the SIR model 

 
From the above, we have the following system of 
differential equations,  
 𝒅𝑺

𝒅𝒕
= μN − 𝛽(𝑡)𝑆(𝑡)

𝐼

𝑁
- μS(t)………  (1) 

 
𝒅𝑰

𝒅𝒕
= 𝛽𝐼(𝑡)𝑆(𝑡)

𝐼

𝑁
− γI(t)-  μR(t )…………     (2) 

 
𝒅𝑹

𝒅𝒕
= γI(t) − μR(t)………………………  (3) 

Where: β = effective contact rates). This refers to the rate of 
transition from S and I; μ = death and birth rate (which are 
assumed to be equal); γ = recovery rate of the infected   

Since birth rate is equal to the death rate the population is 
constant thus; 

S(t) + I(t) + R(t) = N 
 𝒅𝑵

𝒅𝒕
=

 𝒅𝑺

𝒅𝒕
=

 𝒅𝑰

𝒅𝒕
=

 𝒅𝑹

𝒅𝒕
 

We can consider the prevalence i.e. the proportions by 

redefining; 

s=
𝑺

𝑵
  {proportion of the susceptible in the entire population }….. (4) 

i = 
𝑰

𝑵
{proportion of the infected individuals in the entire 

population } ………. (5) 

r = 
𝑹

𝑵
{proportion of the recovered or removed individuals in 

the entire population}……… (5*) 

now substituting the above into equations (1), (2) and (3) for 

simplification. 

Knowing that,  
 𝑑𝑆

𝑑𝑡
=

 𝑑 

𝑑𝑡
[
𝑆

𝑁
] =

1

 𝑁
[
 𝑑𝑆

𝑑𝑡
]…….     (6) 

Substituting (1) into the above equation (6) we have, 

= 
1

𝑁
 [μN − 𝛽𝑆

𝐼

𝑁
  - μ𝑆(𝑡)]………….  (7) 

Expanding the above equation we have; 
1

𝑁
[μN −

1

𝑁
𝛽𝑆

𝐼

𝑁
  − 

1

𝑁
μ𝑆] 

Multiply through by N  and using equation (4) and (5)  we 

have  

[μ
𝑁

𝑁
−

1

𝑁
𝛽 [

𝑆

𝑁
] [

𝐼

𝑁
]   − 

1

𝑁
μ

𝑆

𝑁
] 

 𝒅𝑺

𝒅𝒕
= μ − 𝛽𝑖𝑆- μ𝑆 …………   (8) 

Similarly we get for the other two compartment. 

Knowing that;  
 𝑑𝐼

𝑑𝑡
=

 𝑑

𝑑𝑡

𝐼

𝑁
=

1

𝑁

 𝑑𝐼

𝑑𝑡
 

Substituting equation 2 into the above equation (9) we have;  
𝟏

𝑵
 [ 𝛽𝐼𝑆

𝐼

𝑁
− γI −   μR  ]…………. (8) 

Expanding the above equation we have;  
1

𝑁
[𝛽𝐼𝑆

1

𝑁
− γ

𝐼

𝑁
  − 

𝑆

𝑁
μ] 

Multiply through by N and using equation (4) and (5)  we 

have;  

[𝛽𝐼
𝑆

𝑁

1

𝑁
− γ

𝐼

𝑁
  − 

𝑆

𝑁
μ] 

 𝒅𝑰

𝒅𝒕
= 𝛽𝑖𝑠 - γi- μ𝑖………….………… (10) 

Similarly following the above process once again we have   
 𝒅𝑹

𝒅𝒕
=  γi - μ𝑅    ……   (11)  

The resulting system of differential equation is given as 

follow; 
 𝒅𝑺

𝒅𝒕
= μ − 𝛽𝑖𝑆- μ𝑆 

 𝒅𝑰

𝒅𝒕
= 𝛽𝑖𝑠 - γi- μ𝑖 

 𝒅𝒓

𝒅𝒕
=  γi - μ𝑅    

Considering the entire the population; 

s(t) + i(t) +r(t) = 1 

With initial condition as s(0) ≥  i(0) ≥  r(0) ≥ 0 

The equation has the set positively invariant ῼ{s(t),i(t) ᶓ ᵋR2  

s(t), i(t) ≤ 1} 

Equilibrium Points of the SIR Model  

Disease free equilibrium point  
The Disease Free Equilibrium (DFE) is the state where 

disease do not exist or has been totally eradicated or wiped out 

from the population. At the DFE point the infected and 

recovered class is usually empty. 

Given that;  

s(t) + i(t) +r(t) = 1 

With initial condition  at t = 0 

S(0) = s0  ,  i(0) =i0   r(0) =r0 

This implies; 

At t =0 ;    s(t) =1-i(t) -r(t);  

S0 =1- 0 – 0 

S0 = 1 

Similarly;  

At t =0 ;    i(t) =1-s(t) -r(t)  

         i0 =1- 1– 0 

          i0 = 0 

Finally;  

At t =0 ;    r(t) =1-s(t) -i(t)  

         r0 =1- 1 – 0 

          r0 = 0 

Therefore the DFE point is    E0(s0,i0,r0) = (1,0,0) 

Endemic equilibrium  

The endemic equilibrium state is the state where the disease 

cannot be totally eradicated but remains in the population. For 

the disease to persist in the population the compartments or 

Classes must not be zero at equilibrium state. In other words, 

if it is the endemic equilibrium state, then E (S*,I* ,R*) ≠ 

(0,0,0). 

From the resulting system of differential equation we have;  

μ − 𝛽𝑖𝑆- μ𝑆= 0 ………..   (12) 

𝛽𝑖𝑠 - γi– μ𝑖 = 0 …………   (13) 

 γi - μr = 0   ……………..   (14) 

from equation (14) 

γi - μ𝑟 = 0  

this implies   i = 
μ𝑟

γ
 ………..  (15) 

Substituting equation 15 into equation 13 

𝛽𝑠 [
μ𝑟 

γ
] - γ  [ 

μ𝑟

γ
]– μ [ 

μ𝑟

γ
] = 0   expanding gives 

𝛽𝑠μ𝑟

γ
 = 

γμ𝑟

γ
    + 

μ2𝑟

γ
 

 

Dividing both side by 
𝛽𝑠μ𝑟

γ
 to make s subject of formulae 

s = 
γμ𝑟+ μ2𝑟

γ
    ×  

γ

𝛽μ𝑟
 

s =  
γμ𝑟+ μ2𝑟

𝛽μ𝑟
          factoring  μ 𝑤𝑒 ℎ𝑎𝑣𝑒  

s* = 
γ𝑟+ μ𝑟

𝛽𝑟
  ………… (16) 

Implies s* = 
γ+ μ

𝛽
 

now substituting (16) and (15) into  (12) 

μ − 𝛽 [
μ𝑟

γ
] [

γ𝑟+ μ𝑟

𝛽𝑟
] - μ[

γ𝑟+ μ𝑟

𝛽𝑟
] = 0   

μ − [
𝛽μ𝑟2(γ+ μ)

𝛽𝑟γ
]- μ𝑟 [

γ+ μ

𝛽𝑟
] = 0 

μ − [
μ𝑟(γ+ μ)

γ
]- μ [

γ+ μ

𝛽
] = 0 

Makingr  subject formulae  

− [
μ𝑟(γ+ μ)

γ
] = - μ + μ [

γ+ μ

𝛽
] 
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Now dividing both dividing both side by -   
μ(γ+ μ)

γ
 

r = [- μ    +  
μ( γ+ μ)

𝛽
 ] × 

γ

μ(γ+ μ)
 

    = 
− μγ

μ(γ+ μ)
    +

γμ( γ+ μ)

𝛽μ(γ+ μ)
 

Resolving to a single fraction we have  

− μγ(𝛽μ(γ +  μ)) +  γμ((γ +  μ)μ(γ +  μ))

μ(γ +  μ)𝛽μ(γ +  μ)
 

Now factoring μ(γ +  μ) we have 
−𝛽μγ + μγ(γ +  μ)

𝛽μ(γ +  μ)
 

Again factoring μ we have  

r* =
−𝛽γ+  γ(γ + μ)

𝛽(γ+ μ)
 

r*=  
γ(−𝛽+ γ+ μ)

𝛽(γ+ μ)
    (18) 

Now since we have obtain r* in (18) we substitute into (15) 

I* =
 μ𝑟

γ
 

this implies 

i*= 
γμ(−𝛽+ γ+ μ)

𝛽γ(γ+ μ)
 

Therefore  

i*= 
μ(−𝛽+ γ+ μ)

𝛽(γ+ μ)
    (19) 

hence, endemic equilibrium points are 

 E*(s*,i*,r*) = [
γ+ μ

𝛽
,
μ(−𝛽+ γ+ μ)

𝛽(γ+ μ)
,
γ(−𝛽+ γ+ μ)

𝛽(γ+ μ)
]   (20) 

 

The SIS model with vital dynamics 

The SIS model is a model used in studying the dynamics of 

disease that does not confer lasting immunity (e.g. gonorrhea) 

or recovery to the infected individuals  in a  population. To 

study the stability of the SIS model it is necessary to consider 

the inflow of new births into the susceptible class and the 

death removal from both the susceptible and infected 

compartment. The death and birth rate are assumed to be 

equal so the population is constant. 

Model Formulation 
To formulated model is given by the following set of 

differential equation  
 𝒅𝑺

𝒅𝒕
= −𝛽𝑆(𝑡)

𝐼

𝑁
+ γ

𝐼

𝑁
+ μN–μS(t) ………  (1) 

 
𝒅𝑰

𝒅𝒕
= 𝛽𝐼𝑆(𝑡)

𝐼

𝑁
− γI(t)-  μI(t)……………… (2)     

Given initial condition  

S(0)=S0 I(0)= I0 

Where: 𝛍 − proportional constant called removal rate  
  𝟏

𝛍
 =Average life expectancy  

μN = rate of inflow of new borns into susceptible 

compartment 

The total population density is given thus since the population 

is constant  

S(t) + I(t) = N 

To simplify the above model or system of differential 

equations 

s=
𝑺

𝑵
   {proportion of the susceptible in the entire population 

}………. (4) 

  i = 
𝑰

𝑵
{proportion of the infected individuals in the entire 

population …… (5) 

from equation (1) and (2) 

now dividing through by N it results to  
 𝒅𝑺

𝒅𝒕
= −𝛽

𝑆

𝑁

𝐼 

𝑁
+ γ

𝐼 

𝑁
+ μ

𝑁

𝑁
– μ

𝑆

𝑁
………  (6) 

 
𝒅𝑰

𝒅𝒕
= 𝛽

𝑆 

𝑁

𝐼 

𝑁
− γ

𝐼

𝑁
-  μ

𝐼

𝑁
………………   (7) 

By  equations (4), (5) and (3) for simplification , we get 
 𝑑𝑆

𝑑𝑡
= −𝛽𝑠𝑖 + γ𝑖 + μ – μs…………  (8) 

 
𝑑𝐼

𝑑𝑡
= 𝛽𝑠𝑖 − γi-  μi………………..  (9) 

 

Equilibrium Points of the SIS Model  

Disease free equilibrium point 
Since the population is constant  

S(t) + I(t) =1 

s(t) =1 –I(t) 

At t=0  

S(0)= 1-I(0) 

S0 = 1 – 0 =1 

Also  

I(t) =1 –s(t) 

At t=0  

I(0)= 1-S(0) 

I0 = 1 – 1=0 

The disease equilibrium point is  E0(s0, i0) = (1 ,0 ) 

 

Endemic equilibrium point  
To find the endemic equilibrium point it is resolved as 

follows; 

−𝛽𝑠𝑖 + γ𝑖 + μ– μs = 0…………… (10) 

𝛽𝑠𝑖 − γi-  μi =0 ……………….. (11) 

From 11 it result to  

𝛽𝑠𝑖 − γi-  μi =0 

s = 
γ+μ

𝛽
 ……………….   (12) 

for I  

from 10 

−𝛽𝑠𝑖 + γ𝑖 + μ– μs = 0  

Making i the subject of formula by dividing both side by 𝛽𝑠 +
γ it results to 

i= 
−μ+μs

− 𝛽𝑠+γ
 …………….   (13) 

Substituting 12 into  13 

−μ +  μ[
γ+μ

𝛽
]   ÷  [ −𝛽 [

γ+μ

𝛽
] + γ  ] 

= 
−μ𝛽+ μγ+  μ2

𝛽
]×  [

𝛽

−𝛽γ+     𝛽μ+ 𝛽γ 
] 

Factorizing  μ result to  

I = 
(−𝛽+ γ+ μ 

−𝛽
] 

the Endemic equilibrium points are   

E*(S*,i*)=(
𝛄+𝛍

𝜷
, 
(−𝜷+ 𝛄+ 𝛍 

−𝜷
) 

The equilibriums points will now be use determine the 

stability of the model under consideration. 

 

Results and Discussion 

Stability of the SIR model 

Stability at disease free equilibrium point 

To determine the stability of the model at the disease free 

equilibrium point we use the Jacobin matrix;  

J(s,i,r) =   

[
 
 
 
 
𝜕𝑆

𝜕𝑠

𝜕𝑆

𝜕𝑖

𝜕𝑆

𝜕𝑟
𝜕𝐼

𝜕𝑠

𝜕𝐼

𝜕𝑖

𝜕𝐼

𝜕𝑟
𝜕𝑅

𝜕𝑠

𝜕𝑅

𝜕𝑖

𝜕𝑅

𝜕𝑟]
 
 
 
 

 

At DFE equilibrium point   E0 (s0,i0,r0) = (1,0,0) 

𝑆 = μ − 𝛽𝑖𝑆- μ𝑆 

𝐼 =  𝛽𝑖𝑠 - γi– μ𝑖 
𝑅 =  γi - μr 

Now partially differentiating according to the Jacobin matrix 

we have  

J(s,i,r) =   [

𝛽𝑖 − μ −𝛽𝑠 0

𝛽𝑖  𝛽𝑠 −  γ–  μ 0
0 γ −μ

] 

 

The above 3×3 Jacobin matrix can be resolved to obtain the 

eigenvalues  
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Using  |𝐴 − 𝜆𝐼| 

[

𝛽𝑖 − μ −𝛽𝑠 0
𝛽𝑖  𝛽𝑠 −  γ–  μ 0
0 γ −μ

] −  𝜆 [
1 0 0
0 1 0
0 0 1

] 

[

𝛽𝑖 − μ − 𝜆 −𝛽𝑠 0
 𝛽𝑖  𝛽𝑠 −  γ–  μ − 𝜆 0
0 γ −μ − 𝜆

] 

 

The characteristics polynomial followed by determinant 

(𝛽𝑖 − μ − 𝜆)⌈(𝛽𝑠 −  γ–  μ − 𝜆)(−μ − 𝜆) −  0⌉ 
(𝛽𝑖 − μ − 𝜆)[–  μ𝛽𝑠 + μγ + μ2 + μ𝜆 − 𝜆𝛽𝑠 + 𝜆γ + 𝜆μ + 𝜆2] 
Opening the bracket we have  

−𝜆[𝜆2   + 2μ𝜆 + 𝜆γ − 𝛽𝑠𝜆 + μ2–  μ𝛽𝑠 + μγ] 
−𝜆3 − 2μ𝜆2   − γ𝜆2 + 𝛽𝑠𝜆2 − μ2𝜆 +  μ𝛽𝑠𝜆 − μγ𝜆   
(1)  

−μ[𝜆2   + 2μ𝜆 + 𝜆γ − 𝛽𝑠𝜆 + μ2–  μ𝛽𝑠 + μγ] 
−μ𝜆2 − 2μ2𝜆 − μγ𝜆 + 𝛽𝑠μ𝜆 − μ3 + μ2𝛽𝑠 − μ2γ   

(2) 

𝛽𝑖[𝜆2   + 2μ𝜆 + 𝜆γ − 𝛽𝑠𝜆 + μ2–  μ𝛽𝑠 + μγ] 

𝛽𝑖𝜆2   + 2𝛽𝑖μ𝜆 + 𝛽𝑖𝜆γ − 𝛽2𝑖𝑠𝜆 +  𝛽𝑖μ2– 𝛽2iμ𝑠 + 𝛽𝑖μγ  

(3)    

        -𝛽𝑠 [𝛽𝑖(−μ − 𝜆)= 𝛽2𝑖𝑠μ + 𝛽2𝑖𝑠𝜆  

   

(4) 

Combining   (1), (2), (3) and (4)  

= −𝜆3 + [−2μ − γ + 𝛽𝑠 + 𝛽𝑖 − μ]𝜆2 + [− μ2 +  μ𝛽𝑠 − μγ −
2μ2 − μγ + 𝛽𝑠μ + 2𝛽𝑖μ + 𝛽𝑖γ − 𝛽2𝑖𝑠 + 𝛽2𝑖𝑠]𝜆 − μ3 +

μ2𝛽𝑠 − μ2γ + 𝛽𝑖μ2– 𝛽2iμ𝑠 + 𝛽𝑖μγ + 𝛽2𝑖𝑠μ 

= −𝜆3 + [−2μ − γ + 𝛽𝑠 + 𝛽𝑖 − μ]𝜆2 + [− μ2 +  μ𝛽𝑠 − μγ −
2μ2 − μγ + 𝛽𝑠μ + 2𝛽𝑖μ + 𝛽𝑖γ]𝜆 −  u[μ2 − μ𝛽𝑠 + μγ +
𝛽𝑖γ − 𝛽𝑖μ2] 
Multiplying through by minus we have;  

𝜆3 − [−2μ − γ + 𝛽𝑠 + 𝛽𝑖 − μ]𝜆2

− [−3 μ2 + 2μ𝛽𝑠 − 2μγ + 2𝛽𝑖μ + 𝛽𝑖γ] 
+ u[μ2 − μ𝛽𝑠 + μγ + 𝛽μi − 𝛽𝑖γ]   (5) 

The above equation is the characteristic polynomial of the 

model  

Hence, at Disease free equilibrium point equation (5) becomes  

The DFE point are E(s, i ,r)=(1.0.0)  

P(𝜆)=𝜆3 − [−2μ − γ + 𝛽 − μ]𝜆2 − [−3 μ2 + 2μ𝛽 − 2μγ] +
 u[μ2 − μ𝛽 + μγ] (6) 

For simplification we test for a factor of the cubic polynomial 

and thus reduce it to quadratic polynomial. 

Let 𝜆 = - μ    (7) 

Substituting (7) into (6) we obtain  

 P (𝜆) = 0  

Hence we conclude that (𝜆+ μ)is a factor of the polynomial  

 Therefore 𝜆1 = - μ 

equation (6) is  reduced to a quadratic equation by polynomial  

division  

𝜆2 − [−4μ − γ + 𝛽]𝜆 + [−μ2 + μγ − μ𝛽]   

(8) 

Now, to determine the stability we find the other two 

eigenvalues using  

𝜆 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
    (8*) 

    b= -[−4μ − γ + 𝛽] 
  b2 = 16μ2 +8 μγ- 8μ 𝛽 + γ2 - 2𝛽γ + 𝛽2 

4ac =4[−μ2 + μγ − μ𝛽] =−4μ2 + 4μγ − 4μ𝛽 

b2- 4ac =16μ2 +8 μγ- 8μ 𝛽 + γ2 - 2𝛽γ + 𝛽2 + 4μ2 − 4μγ +
4μ𝛽 

 = 20μ2 + 4μγ-4μ 𝛽+ γ2- 2𝛽γ + 𝛽2 

Substituting into (8*) we have  
𝜆2,3

=
[−4μ − γ + 𝛽]        ±   √20μ2  +  4μγ − 4μ 𝛽 + γ2 −  2𝛽γ + 𝛽2

2
 

Therefore  

𝜆 = - μ 

𝜆2,3

=
[−4μ − γ + 𝛽]        ±   √20μ2  +  4μγ − 4μ 𝛽 + γ2 −  2𝛽γ + 𝛽2

2
 

Consideringλ1 =–  𝜇, according to theorem 1 we have that 

𝛌𝟏 < 0 satisfying the condition for stability and λ2,3 similarly 

satisfies the condition for the stability if and only if the 

determinant of the function is less than zero giving rise to 

complex function. While considering the real Re (λ2,3) part 

we observed that Re (λ2,3)≤ 0 which satisfies the condition in 

theorem 1. Hence the model is said to be locally stable at the 

Disease free equilibrium point. 

Stability at the endemic equilibrium point 

Similarly, we look for the stability of the model at the 

Endemic equilibrium point. Hence, using equation (5) above  

𝜆3 − [−2μ − γ + 𝛽𝑠 + 𝛽𝑖 − μ]𝜆2

− [−3 μ2 + 2μ𝛽𝑠 − 2μγ + 2𝛽𝑖μ + 𝛽𝑖γ] 
+ u[μ2 − μ𝛽𝑠 + μγ + 𝛽μi − 𝛽𝑖γ]   (i) 

 

 Endemic equilibrium points are  

E*(s*,i*,r*) = [
γ+ μ

𝛽
,
μ(−𝛽+ γ+ μ)

𝛽(γ+ μ)
,
γ(−𝛽+ γ+ μ)

𝛽(γ+ μ)
]  (ii) 

 

Substituting (ii) into (5) above we have  

𝜆3 − [−2μ − γ + 𝛽(
γ +  μ

𝛽
) + 𝛽(

μ(−𝛽 +  γ +  μ)

𝛽(γ +  μ)
) − μ]𝜆2

−

[
 
 
 
 −3 μ2 + 2μ𝛽(

γ +  μ

𝛽
, ) − 2μγ + 2𝛽(

μ(−𝛽 +  γ +  μ)

𝛽(γ +  μ)
)μ + 𝛽(

μ(−𝛽 +  γ +  μ)

𝛽(γ +  μ)
)γ

]
 
 
 
 

 

+ u[μ2 − μ𝛽(
γ +  μ

𝛽
) + μγ + 𝛽μ(

μ(−𝛽 +  γ +  μ)

𝛽(γ +  μ)
)

− 𝛽(
μ(−𝛽 +  γ +  μ)

𝛽(γ +  μ)
)γ] 

 

Resolving the above resulted to 

𝑃(λ) = 𝜆3 − [−2μ +
μ(−𝛽+ γ+ μ)

(γ+ μ)
)]𝜆2 − [−3 μ2 + 2μ(γ +

 μ) − 2μγ +
2μ2(−𝛽+ γ+ μ)

(γ+ μ)
) +

μγ(−𝛽+ γ+ μ)

(γ+ μ)
] 𝜆 +  u[μ2 − μ(γ +

 μ) + μγ +
μ2(−𝛽+ γ+ μ)

(γ+ μ)
−

μγ(−𝛽+ γ+ μ)

(γ+ μ)
] (iii)  

 

The above (iii) is the characteristic polynomial at the Endemic 

equilibrium point  

Now, to determine the stability of the model we solve for the 

eigenvalues as follows for (iii) 

To find a linear factor we solve for (iii)   

   

Let  λ = −μ 

𝑃(−μ) = 0 

 

This implies that (λ +μ) is linear factor  of the polynomial 

hence first eigenvalue is  λ1= −μ 

We look for the other two eigenvalues by reducing the cubic 

polynomial to quadratic and evaluated the eigenvalues to be  
λ2,3

=
−μ𝛽      ±    √4μ4 − 4𝛽μ3 + 𝛽2μ2 − 8𝛽γμ2 + 12γ2μ2 − 𝟒𝛽γ2𝛍 + 𝟒γ3𝛍

2γ + 𝛍
 

 

Therefore, according to theorem 1, we have that λ1= −μ  

which satisfy the criteria for stability since its λ1< 0 and 𝛌𝟐,𝟑 

will satisfy the stability condition if and only if the 

determinant (values under square root) is less than zero i.e. it 

is a complex function containing real imaginary part. Thus, 

we consider the real part Re(λ2,3) which is negative ((λ2,3 ≤
0) satisfying  the condition for stability. Hence we say the 

model is local stable at the Endemic equilibrium point 
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Stability of the SIS Model  

Stability at disease free equilibrium point 
To determine the stability of the model at DFE point we use 

the Jacobin matrix. 

J(s,I ) =[

𝜕𝑆

𝜕𝑠

𝜕𝑆

𝜕𝑖
𝜕𝐼

𝜕𝑠

𝜕𝐼

𝜕𝑖

] 

S= −𝛽𝑠𝑖 + γ𝑖 + μ– μs 

I= 𝛽𝑠𝑖 − γi-  μi 
The disease equilibrium point is  E0(s0, i0) = (1 ,0 ) 

J(s0 , I0 ) =[
−𝛽𝑖–  μ −𝛽𝑠 + μ

𝛽𝑖 𝛽𝑠 − γ −   μ 
] 

To determine the stability of the model we look at the nature 

of the eigenvalues of the matrix above by finding the 

characteristic polynomial using  
|𝐴 − 𝜆𝐼| 

J(s0 , I0 ) =[
−𝛽𝑖–  μ − 𝜆 −𝛽𝑠 + μ

𝛽𝑖 𝛽𝑠 − γ −   μ − 𝜆
] 

Now we find the determinant Det (j) 

Det (j) =[(−𝛽𝑖–  μ − 𝜆)(𝛽𝑠 − γ −   μ − 𝜆)] − [𝛽𝑖(−𝛽𝑠 + μ)] 
Now applying the values of the variables at equilibrium point 

it results to  

=[(–  μ − 𝜆)(𝛽𝑠 − γ −   μ − 𝜆)] − [0(−𝛽𝑠 + μ)] 

[(–  μ − 𝜆)(𝛽𝑠 − γ −   μ − 𝜆)] 

− 𝛽μ + μγ + μ2 + μ𝜆 – 𝛽𝜆 + γ𝜆 + μ𝜆+λ2 = 0 

λ2+ μ𝜆 + γ𝜆  – 𝛽𝜆 + μ𝜆 −  𝛽μ +  μγ + μ2 = 0 

Re organizing we have that  

λ2+ (μ + γ – 𝛽 + μ)𝜆 −  𝛽μ +  μγ + μ2 = 0  

The above gives us the characteristic polynomial. Now to 

obtain the eigenvalues of the characteristic polynomial we use 

the quadratic formula 

𝜆 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

𝑏 =  (μ + γ – 𝛽 + μ) 

𝑏2 =  (μ + γ – 𝛽 + μ) (μ + γ – 𝛽 + μ) 

= 4μ2 + 4 μγ − 4𝛽μ + γ2 - 2𝛽γ +𝛽2  

4𝑎𝑐 = 4(− 𝛽μ +  μγ + μ2) = − 4𝛽μ + 4 μγ + 4μ2 

𝑏2 − 4𝑎𝑐 =  4μ2 + 4 μγ − 4𝛽μ + γ2 - 2𝛽γ +𝛽2 + 4𝛽μ − 4 μγ − 4μ2 

√𝑏2 − 4𝑎𝑐 = √γ2  −  2𝛽γ + 𝛽2   = (γ − 𝛽) 

 

Therefore, 

𝜆1 =  
−(μ+γ – 𝛽+μ)+(γ−𝛽)

2
 =   

−2μ

2
 

𝝀𝟏 = −μ 

𝜆2 =  
−(μ + γ –  𝛽 + μ) − γ − 𝛽

2
 

𝜆2= 
2(−μ−γ)

2
 

𝝀𝟐 = −μ − γ 

 

Thus from theorem 1, we notice that the eigenvalues 𝝀𝟏 <
0  𝜆𝟐< 0 signifying it is less than zero and hence proves the 

system at DFE point to be locally stable 

Stability at the endemic equilibrium point  
To determine the stability of the model at the endemic 

equilibrium we also use the Jacobin matrix. 

The endemic equilibrium point is E *(S,I*)= [ 
γ+μ

𝛽
 ,   

−(−𝛽+ γ+ μ 

𝛽
 ] 

J(s*, i* ) =[
−𝛽𝑖–  μ − 𝜆 −𝛽𝑠 + μ

𝛽𝑖 𝛽𝑠 − γ −   μ − 𝜆
] 

To obtain the characteristic polynomial we first find the 

determinant  

Det(j)=[(−𝛽(
−(−𝛽+ γ+ μ 

𝛽
)–  μ − 𝜆)(𝛽(

γ+μ

𝛽
) − γ −   μ − 𝜆)] −

[𝛽
γ+μ

𝛽
(−𝛽(

γ+μ

𝛽
) + μ)] 

Expanding the above results  
[(−𝛽 + γ + μ − μ − 𝜆)(γ + μ − γ − μ − 𝜆)]

− [(γ + μ − μ)(−γ − μ + μ)] 
𝜆2 + 𝜆 (𝛽 −  γ)- γ𝛽 + γμ + γ2 = 0 

The above is the characteristic polynomial. We investigate the 

polynomial for stability of the of the model by finding out the 

eigenvalues 

Using 𝜆 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 

b2 = (𝛽 −  γ) (𝛽 −   γ) 

= 𝛽2 − γ𝛽 − γ𝛽 + γ2 

4ac = 4(−γ𝛽 + γμ +γ2) 

𝜆 =
−(𝛽 −  γ) ± √𝛽2 + 2γ𝛽 − 3 γ2 −  4γμ)

2
 

Considering the equation (discriminant) under the square root 

sign, if the value of 𝑏2<4acthen the eigenvalues are complex 

with the real part −(𝛽 −  γ)(the real part is negative), then 

according to theorem 1, we conclude that the endemic 

equilibrium is stable since the real parts of both eigenvalues 

are negative. This shows that system is locally stable at the 

endemic equilibrium point 

 

Discussion  
Effective contact rate 𝜷 and recovery rate𝛄 are two main 

parameters that inpact the spread of diseases. Consequently it 

determines the number of people in a particular compartment 

in a population. These two usually works to counter act or 

nullifies the other, while one reduces, the other increases vice 

versa. We observed that an increase in effective contact rate 

(signifying spread of the disease) while recovery rate is less, 

increased the number of the infectious compartment in the 

population over the given period of time. On the contrary, an 

increase in recovery rate (signifying decline of the disease) 

while effective contact rate is less, increased the number of 

the susceptible population over a given period of time.  

However, effective contact rate could be frequency dependent 

or mass action dependent, while the recovery rate depends on 

vaccination and isolation strategies. Effective contact rate is 

said to be dependent on frequency mode of transmission if 

transmission of the disease depends on the number of time the 

infectious compartment  come in contact with susceptible 

individuals in the population that leads to successful 

transmission of the disease. The mass action mode of 

transmission depends on the population density. These two 

parameters are always in consideration when eradicating 

epidemics.  

 

Conclusion and Recommendation 
The study of the evaluation of SIR and SIS compartmental 

epidemiological models suggests that there are two 

equilibrium points which are the disease-free equilibrium 

point and the endemic equilibrium point. We further obtained 

the local stability of these models at these points to confirm 

stability. The disease equilibrium point indicates that the 

disease will be wiped out or it dies out implying that the 

population can be said to be disease free because, the infected 

compartment is zero (empty) and so there is no recuperation  

On the contrary moving on to the endemic equilibrium point 

these adjustments as the contaminated category maintain some 

value. The endemic equilibrium state is the point where the 

disorder can't be completely eradicated but stays in the 

population. For the ailment to persist in the population the 

compartments ought to no longer be zero at equilibrium point. 
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In different words, if it is the endemic equilibrium state, then 

E (S*,I* ,R*) ≠ (0,0,0). 

These points have been further used to obtain the stability of 

the models in accordance to theorem 1, proposing that if the 

eigenvalues are negative, then the system is stated to be 

stable. However, the practical use of epidemic models must 

rely heavily on the reality put into the models. This doesn’t 

mean that a reasonable model can include all possible effects 

but rather includes the mechanisms in the simplest possible 

way so as to maintain major components that influence 

disease epidemics.  

The following recommendations were made in the study;  

i. That the population must work in earnest to avoid 

continual spread of the disease by affording themselves 

the public enlightenment by professional bodies or 

agencies 

ii. In the case where endemic equilibrium exist the 

government and other major stake holders in public 

health sector should understand how effective 

inoculation (vaccination), isolation  plan helps to 

increase the number of individuals the susceptible class 

by reducing the effective contact rate. 

iii. Government and other agencies should be proactive 

about winning the war against epidemics by making 

free or affordable  preventive tools or instrument to the 

populace and also consider sponsoring more researches 

related to mathematical modeling of diseases 

iv. Great care should be taken before epidemic models are 

used for prediction of real world phenomena because 

even simple models  pose important questions about the 

underlying mechanisms of infection spread and possible 

means of control of the disease or epidemic 
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